Fast Adaptation in Generative Models with Generative Matching Networks
نویسندگان
چکیده
Despite recent advances, the remaining bottlenecks in deep generative models are necessity of extensive training and difficulties with generalization from small number of training examples. Both problems may be addressed by conditional generative models that are trained to adapt the generative distribution to additional input data. So far this idea was explored only under certain limitations such as restricting the input data to be a single object or multiple objects representing the same concept. In this work we develop a new class of deep generative model called generative matching networks which is inspired by the recently proposed matching networks for one-shot learning in discriminative tasks and the ideas from meta-learning. By conditioning on the additional input dataset, generative matching networks may instantly learn new concepts that were not available during the training but conform to a similar generative process, without explicit limitations on the number of additional input objects or the number of concepts they represent. Our experiments on the Omniglot dataset demonstrate that generative matching networks can significantly improve predictive performance on the fly as more additional data is available to the model and also adapt the latent space which is beneficial in the context of feature extraction.
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملGenerative Moment Matching Networks
We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer preceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Inst...
متن کاملMMGAN: Manifold Matching Generative Adversarial Network for Generating Images
Generative adversarial networks (GANs) are considered a new overarching paradigm in the world of generative models. However, it is well-known that GANs are difficult to train, and several different techniques have been proposed in order to stabilize their training. In this paper, we propose a novel training method called manifold matching, and a new GAN model called Manifold Matching GAN (MMGAN...
متن کاملOn the Quantitative Analysis of Decoder-Based Generative Models
The past several years have seen remarkable progress in generative models which produce convincing samples of images and other modalities. A shared component of many powerful generative models is a decoder network, a parametric deep neural net that defines a generative distribution. Examples include variational autoencoders, generative adversarial networks, and generative moment matching networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.02192 شماره
صفحات -
تاریخ انتشار 2016